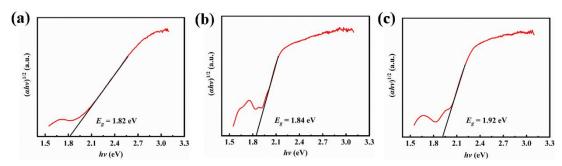
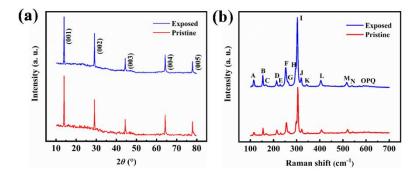
Supplemental material for

Ultrafast nonlinear optical absorption and carrier dynamics of CrPS₄ thin films


Lei Yan, 1 Qinyong He, 1 Ziyao Gong, 1 Yunqi Yang, 1 Anping Ge, 2 Guohong Ma, 1 Ye Dai, 1 Liaoxin Sun, 2 , * and Saifeng Zhang 1 , †

¹Department of Physics, Shanghai University, Shanghai 200444, China


²State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; University of Chinese Academy of Sciences, Beijing 100049, China

[†]sfzhang@shu.edu.cn

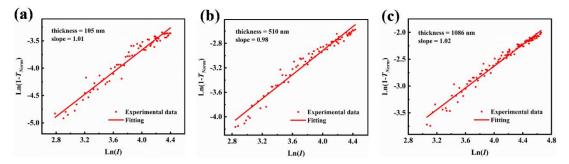

^{*}sunlx@mail.sitp.ac.cn

Fig. S1. The bandgap of CrPS₄ with different thicknesses. (a) 105nm, (b) 510 nm, and (c) 1086 nm.

FIG. S2. The comparison of (a) XRD pattern and (b) Raman spectra of CrPS₄ before and after air exposure.

Fig. S3. Plots of $ln(1-T_{Norm})$ versus ln(I) of (a) 105 nm, (b) 510 nm, and (c) 1086 nm CrPS₄.

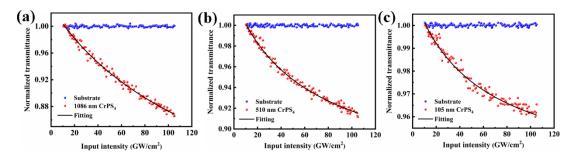
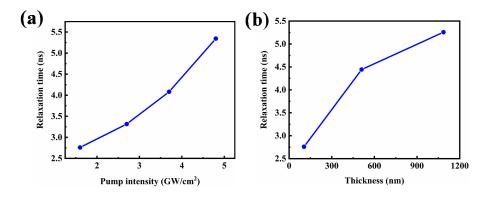



FIG. S4. Nonlinear absorption results of CrPS₄ and sapphire substrate.

Fig. S5. Relaxation time τ_3 with different (a) pump intensity and (b) thickness of CrPS₄.

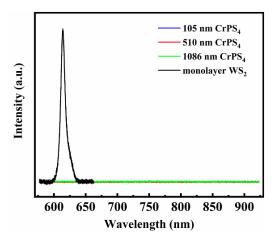
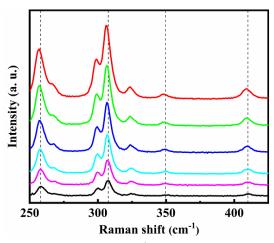



Fig. S6. Photoluminescence spectra of monolayer WS2 and CrPS4 at different thicknesses.

Fig. S7. Raman spectra from 250 to 425 cm⁻¹ excited at 532 nm under different powers corresponding to Fig. 5(b).